



# Kapitel 5 – WLAN nach IEEE 802.11

Vorlesung Mobilkommunikation Wintersemester 2017/18 Prof. Dr. Oliver Waldhorst (HS Karlsruhe), Markus Jung

#### INSTITUT FÜR TELEMATIK



# **Gliederung**





#### **Mobiles TCP**



Mobile Ad Hoc Netze



Mobile IP



WLAN, Bluetooth



GSM, UMTS, LTE



Mobilitätsmanagement



Medienzugriff



Drahtlose Übertragung

# Charakteristika drahtloser lokaler Netze (Wireless Local Area Networks, WLAN)



#### Vorteile

- Keine Verkabelungsprobleme
  - z.B. historische Gebäude, Feuerschutz
- Geringere Kosten für Inbetriebnahme
  - Ein Zugangspunkt wird von vielen Nutzern genutzt
- Geräte räumlich flexibel platzierbar innerhalb eines Empfangsbereichs
- Ad-hoc-Netze ohne vorherige Planung realisierbar
- Robustheit gegenüber Beschädigungen
  - Katastrophen wie Erdbeben, Feuer und unachtsame Benutzer

#### Nachteile

- Geringere Übertragungsraten als Festnetze
  - z.B. max. 54 Mbit/s bei IEEE 802.11a/g, max. 600 Mbit/s bei IEEE 802.11n
- Geringere Dienstgüte
  - Übertragungsfehler, Verzögerung und Jitter größer
- Sicherheit
  - Abhören der Luftschnittstelle leicht möglich



#### Entwurfsziele für drahtlose lokale Netze

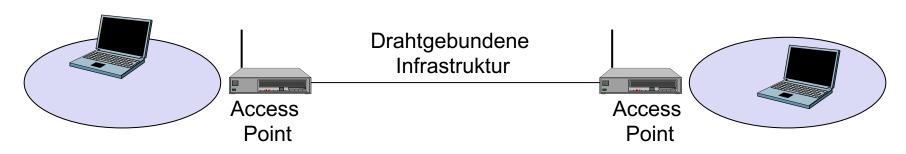


- Weltweite Funktion
- Betrieb ohne Sondergenehmigungen bzw. Lizenzen möglich
- Möglichst geringe Leistungsaufnahme wegen Batteriebetrieb
- Robuste Übertragungstechnik
- Vereinfachung der (spontanen) Zusammenarbeit bei Treffen
  - Einfache Handhabung und Verwaltung (Plug & Play)
- Schutz bereits getätigter Investitionen im Festnetzbereich
  - Interoperabilität zwischen LANs und WLANs
  - Transparenz für höhere Schichten
- Sicherheit hinsichtlich
  - Abhören vertraulicher Daten



- Emissionen
  - z.B. keine Interferenzen mit Herzschrittmachern






# Ausprägungsformen drahtloser LANs



#### Infrastruktur-Netze

Geräte sind drahtlos über einen Zugangspunkt (AP - Access Point) mit der drahtgebundenen Infrastruktur verbunden



#### Ad-hoc-Netze

Geräte kommunizieren ohne drahtgebundene Infrastruktur direkt miteinander





# **WLAN-Lösungen**



- IEEE 802.11
  - Basisstandard wurde am 26.07.1997 verabschiedet
  - Erweiterungen der Bitübertragungsschicht (PHY-Schicht)
    - 802.11a/b/g/n/a\*
  - Erweiterungen der Medienzugriffsschicht-Schicht (MAC-Schicht)
    - 802.11h/e/i
  - Hohe Verbreitung (→ in diesem Kapitel behandelt)
- HIPERLAN High Performance Radio Local Area Network
  - Europäischer Standard
  - Version 1: 23,529 Mbit/s im 5 GHz Band
  - Version 2: 54 Mbit/s im 5 GHz Band
  - Derzeit keine Produkte verfügbar
- HomeRF Home Radio Frequency
  - Standardisierung durch Firmenkonsortium
    - u.a. Intel, Compaq, IBM, HP, Microsoft, Motorola
  - Speziell für Privatanwender konzipiert
    - Einfache Installation/geringe Kosten
  - Geringe Verbreitung
  - HomeRF Working Group hat sich im Januar 2003 aufgelöst





# **Beispiel: KA-WLAN**

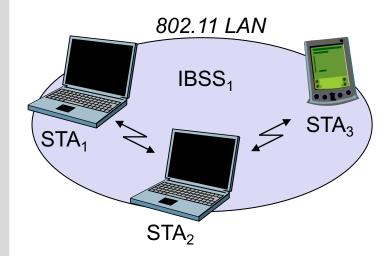


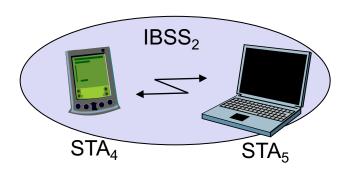




# **Architektur eines Infrastrukturnetzes**







- Station (STA)
  - Endgeräte mit Zugriffsfunktion auf das drahtlose Medium und Funkkontakt zum Zugangspunkt (AP – Access Point)
- Basic Service Set (BSS)
  - Gruppe von Stationen + AP, die auf dem selben Kanal (Funkfrequenz) miteinander kommunizieren
- Access Point (AP)
  - Station, die sowohl an einem BSS als auch am Distribution System teilnimmt.
- Portal
  - Übergang in ein anderes Netz
- Distribution System (DS)
  - Verbindung mehrerer BSS zu einem Extended Service Set (ESS)
  - Architektur des Distribution System ist nicht Teil des Standards

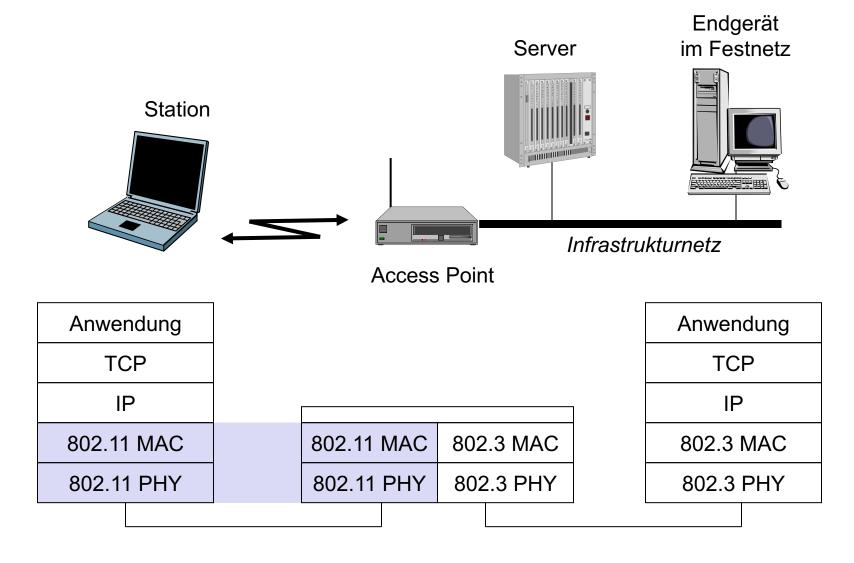


# **Architektur eines Ad-hoc Netzes**








802.11 LAN

- Direkte Kommunikation der Geräte
  - Begrenzte Reichweite
- Station (STA)
  - Endgerät mit Zugriffsfunktion auf das drahtlose Medium
- Independent Basic Service Set (IBSS)
  - Gruppe von Stationen, die auf dem selben Kanal (Funkfrequenz) miteinander kommunizieren
- Bildung verschiedener IBSSs
  - Nutzen unterschiedlicher Kanäle (Funkfrequenzen)
  - Raummultiplexen (genügend Abstand)
  - DSSS



# **Protokollstapel**





# Schichten und Funktionen



- MAC
  - Medienzugriff
  - Fragmentierung
  - Verschlüsselung
- MAC-Management
  - Synchronisation
  - Scanning
  - Association/Re-association
  - Power-Management
  - Authentifizierung/ Verschlüsselung

|     | LLC<br>Logical Link Control              |                   |            |
|-----|------------------------------------------|-------------------|------------|
| MAC | MAC Medium Access Control                | MAC<br>Management | Management |
| PHY | PLCP Physical Layer Convergence Protocol | PHY<br>Management |            |
|     | PMD Physical Medium Dependent            |                   | Station    |

- PLCP
  - Einheitlicher PHY-Zugangspunkt unabhängig von Übertragungstechnik
  - Clear Channel Assessment Signal
  - Signalschwelle für Carrier Sense
- PMD
  - Modulation
  - Codierung
- PHY Management
  - Kanalwahl
- Station Management
  - Koordination der Management-Funktionen





# **PHY-Schicht**



# Basisstandard definiert 3 Varianten

- Direct Sequence Spread Spectrum (DSSS)
  - Datenraten von 1 2 Mbit/s
  - Weite Verbreitung
  - Heute noch in 802.11b/g-Komponenten enthalten
- Frequency Hopping Spread Spectrum (FHSS)
  - Datenraten von 1 2 Mbit/s
  - Keine WLAN-Komponenten verfügbar, die FHSS verwenden
    - Aber: Bluetooth verwendet FHSS
  - ... im Weiteren nicht berücksichtigt

#### Infrarot

Datenraten von 1 – 2 Mbit/s

Kapitel 5 – IEEE 802.11

- Keine WLAN-Komponenten verfügbar, die Infrarot verwenden
  - Aber: IrDA verwendet Infrarot
- ... im Weiteren nicht berücksichtigt



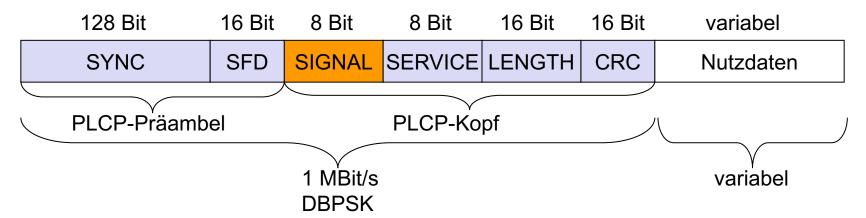


# **DSSS in IEEE 802.11**



- Verwendung des 11-Chip Barker-Codes für die Spreizung im Basisstandard
  - Bei einer Datenrate von 1 oder 2 Mbit/s
    - Bei höheren Datenraten verwendet man andere Codes, s.u.




- Code: +1, -1, +1, +1, -1, +1, +1, +1, -1, -1
  - Konvention: +1 repräsentiert logische 0, -1 repräsentiert logische 1 → Code: 01001000111
  - Länge der Chipping-Sequenz ist 11
- Konstante Symbolrate von 1 MSymbol/s
  - Achtung: In 802.11 ist <u>Symbol</u> die Wellenform für Übertragung einer Gruppe von Chips!
    - 11 oder 22 Chips bzw. 1 oder 2 Datenbits
  - Symbol im Sinn von Kapitel 2 ist in 802.11 Modulationsrate
    - Immer 11 MBd!
- Verwendete Modulationsverfahren
  - Differential Binary Phase Shift Keying (DBPSK)
    - 11 Chips/Symbol → 1 Bit/Symbol → Datenrate: 1 Mbit/s
  - Differential Quadrature Phase Shift Keying (DQPSK)
    - 22 Chips/Symbol → 2 Bit/Symbol → Datenrate: 2 Mbit/s

| MAC_   | MAC  | MAC<br>Management | ent                 |
|--------|------|-------------------|---------------------|
| <br>≻H | PLCP | PHY               | Station<br>inagemer |
| 立      | PMD  | Management        |                     |



# Format einer DSSS-Dateneinheit





- SYNC: Synchronisation
  - Synchronisation über die Bitfolge 101010
- SFD: Start Frame Delimiter
  - ▶ Bitfolge 1111001110100000 kennzeichnet Ende der Präambel und Anfang vom PLCP-Kopf
- SIGNAL
  - Datenrate, mit der Nutzdaten übermittelt werden
  - Erleichtert Rückwärtskompatibilität

- SERVICE
  - ▶ Reserviert (wird z.B. von IEEE 802.11b/g verwendet)
  - ▶ 0x00 zeigt 802.11 Rahmen an
- LENGTH
  - ▶ Zeit [µs], die für die Übertragung der Nutzdaten benötigt wird
- CRC
  - ▶ Prüfsumme über den PLCP-Kopf
  - ▶ Prüfpolynom: ITU-T-CRC-16





# **DSSS-Kanalaufteilung**



- WLAN verwendet das ISM-Band
  - Untergliederung in 13 Frequenzbänder/Kanäle im Bereich 2,4000 – 2,4835 GHz
    - Breite eines Frequenzbandes: 22 MHz
  - Max. 3 nicht überlappende Kanäle realisierbar
- Aufteilung

```
2,461- Kanal 13 - 2,483
 2,401- Kanal 1 - 2,423
                                 2,431- Kanal 7 - 2,453
     2,406- Kanal 2 - 2,428
                                     2,436- Kanal 8 - 2,458
                                           2,441- Kanal 9 - 2,463
           2,411- Kanal 3 - 2,433
                2,416 - Kanal 4 - 2,438
                                                 2,446- Kanal 10 - 2,468
                       2,421- Kanal 5 - 2,443
                                                      2,451- Kanal 11 - 2,473
                                                            2,456- Kanal 12 - 2,478
                             2,426- Kanal 6 - 2,448
                                       ISM-Band
                                                                             2.483 GHz
2,400 GHz
```



# Erweiterungen (1)



- IEEE 802.11b
  - Datenraten von 5,5 und 11 Mbit/s im 2,4 GHz-Band
  - Abwärtskompatibel zum Basisstandard
  - Einsatz von Complementary Code Keying (CCK)
  - Definition eines Formats für kurze Dateneinheiten
- IEEE 802.11g
  - Datenraten von 6 54 Mbit/s im 2,4 GHz-Frequenzbereich
  - Einsatz von OFDM
  - Abwärtskompatibel zu 802.11 und 802.11b
- IEEE 802.11a
  - Datenraten von 6 54 Mbit/s im 5 GHz-Frequenzbereich
  - Einsatz von OFDM
- IEEE 802.11n
  - Datenraten von bis zu 600 Mbit/s im 2,4 GHz- und 5 GHz Frequenzbereich
  - Einsatz von Multiple Input Multiple Output (MIMO) mit OFDM



# **Erweiterungen (2)**



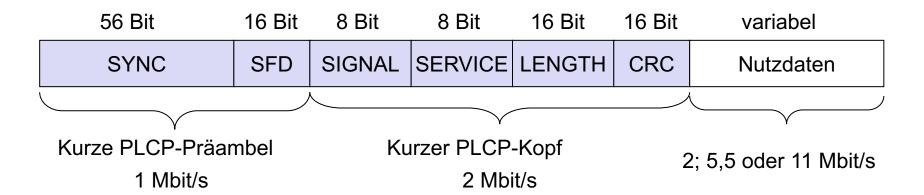
- 802.11ac
  - Datenraten > 1 Gbit/s im 5GHz Band
  - 256-QAM, mehr MIMO-Ströme, Multi-user MIMO
- 802.11ad
  - Komplett neu Bitübertragungsschicht
  - 7 Gbit/s im 60GHz Band
- 802.11af
  - Erlaubt Betrieb im TV-White-Space-Spektrum (54MHz 70MHz) basierend auf 802.11ac
  - Schmalere OFDM-Kanäle, daher Datenraten bis 568,9 MHz
- 802.11ah
  - Betrieb in Frequenzbändern unter 1GHz, daher größere Reichweiten, aber wenig verfügbare Frequenzen
  - Viele Einsatzgebiete, z.B. große Sensornetze, Hotspots mit großer Reichweite, Entlastung von Mobilfunknetzen vom Datenverkehr





# **IEEE 802.11b**




- Verwendung eines 8 Bit langen Complementary Codes anstelle des 11 Bit langen Chip Baker Codes (Complementary Code Keying – CCK)
  - Modulationsrate bleibt bei 11 MBd
  - Neue Symbolrate = 1 MSymbol/s \* 11 / 8 = 1,375 MSymbol/s
  - Chipping Sequence wird durch (einen Teil der) Nutzdaten bestimmt
    - d.h. durch verwendeten Spreizcode werden gleichzeitig Nutzdaten übermittelt
- Realisierung der höheren Datenraten
  - 4 Bit pro Symbol → Datenrate = 1,375 MSymbol/s \* 4 Bit/Symbol = 5,5 MBit/s
    - 2 Bit werden über DQPSK moduliert
    - 2 Bit wählen einen von 4 komplexen Codes aus
  - 8 Bit pro Symbol → Datenrate = 1,375 MSymbol/s \* 8 Bit/Symbol = 11 MBit/s
    - 2 Bit werden über DQPSK moduliert
    - 6 Bit wählen einen von 64 komplexen Codes aus
- Da Empfänger alle 4 bzw. 64 Codes kennt, kann er den verwendeten Code herausfinden und damit die Nutzdaten dekodieren



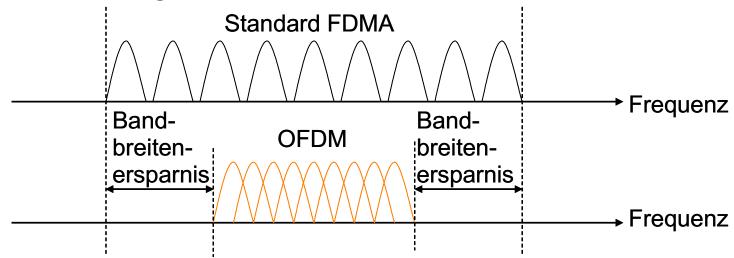


#### IEEE 802.11b - Kurze Dateneinheiten





- Format für kurze DSSS-Dateneinheiten
  - SYNC wird von 128 Bit auf 56 Bit reduziert
  - SFD zeigt statt 1111001110100000 den Wert 0000010111001111 an
    - Unterscheidung möglich
  - PLCP-Kopf wird mit 2 Mbit/s statt mit 1 Mbit/s übertragen
  - Ergebnis
    - Übertragung von Präambel und Kopf benötigt nur 96 µs statt 192 µs
      - Einsparung von 50%
  - Access Point zeigt ggf. in periodischen Beacons an, dass er das Format für kurze DSSS-Dateneinheiten unterstützt






# **IEEE 802.11g**



- Datenraten von 6 bis 54 Mbit/s im 2,4 GHz Band
  - Vorteile
    - Weltweit lizenzfreies Frequenzband
    - Auswirkungen der Dämpfung geringer als im 5 GHz Band (vgl. IEEE 802.11a)
      - Geringere Sendeleistung erforderlich
- Verwendung von OFDM







# **IEEE 802.11g**



- Abwärtskompatibel zu 802.11 und 802.11b
  - Extended Rate PHY
    - Verfahren, die Datenraten über 11 Mbit/s unterstützen
  - Non Extended Rate PHY
    - Verfahren, die Datenraten bis 11 MBit/s unterstützen (802.11, 802.11b)
- Erweiterung der MAC-Schicht
  - Abwärtskompatibilität zu 802.11 und 802.11b
    - Siehe MAC-Erweiterungen: Protection Mechanismus





#### j+

# **IEEE 802.11a**



- Datenraten von 6 bis 54 Mbit/s im 5 GHz Band
- Verwendung von OFDM
- Vorwärtsfehlerkorrektur (Forward Error Correction, FEC), um auftretende Fehler korrigieren zu können
  - FEC Rate = n/m: Für n Netto-Bits müssen m Brutto-Bits gesendet werden

| Modulation | FEC Rate | Datenrate     |
|------------|----------|---------------|
| BPSK       | 1 / 2    | 6 Mbit/s (*)  |
| BPSK       | 3 / 4    | 9 Mbit/s      |
| QPSK       | 1 / 2    | 12 Mbit/s (*) |
| QPSK       | 3 / 4    | 18 Mbit/s     |
| 16-QAM     | 1 / 2    | 24 Mbit/s (*) |
| 16-QAM     | 3 / 4    | 36 Mbit/s     |
| 64-QAM     | 2/3      | 48 Mbit/s     |
| 64-QAM     | 3 / 4    | 54 Mbit/s     |

(\*) verpflichtend







# **IEEE 802.11a**



OFDM-Dateneinheit PLCP Kopf 4 Bit 1 Bit 1 Bit 6 Bit 16 Bit 6 Bit 12 Bit Nutz-PLCP Präambel RATE |RESRVD|LENGTH **TAIL** SERVICE PARITY TAIL PAD daten BPSK, 1/2 variabel Trainingssequenz

6 Mbit/s

- RATE
  - Datenrate mit der ab dem Service-Feld gesendet wird
- LENGTH
  - Länge der Nutzdaten
- PARITY
  - Gerade Parität des LENGTH-**Feldes**

- TAIL
  - 0-Bits; Empfänger stellt sich auf die geforderte Datenrate ein; Überführung des Faltungskodierers in den Ausgangszustand
- SERVICE
  - ▶ Reserviert für zukünftige Verwendung (9 Bits) und Synchronisation des Descramblers (7 Bits)
- PAD
  - Füllbits (OFDM spezifisch)



22



# **IEEE 802.11a**



- Codierungsprozess
  - Trainingsphase
    - 1 x kurze Trainingssequenz
      - Kontrolle des Antennengewinns, Antennenauswahl, Taktgewinnung, Grobeinstellung der Empfängerfrequenz
    - 2 x lange Trainingssequenz
      - Kanalbestimmung, Feinabstimmung der Empfängerfrequenz
  - Scrambling
    - Verwürfeln der Daten (Service, Nutzdaten, Tail, Pad)
      - Vermeidung langer Folgen von Nullen und Einsen
  - Faltungskodierung (Service, Nutzdaten, Tail, Pad)
    - Hinzufügen von Redundanzbits für Vorwärtsfehlerkorrektur (immer Code-Rate 1/2)
  - Ggf. Punktierung (Service, Nutzdaten, Tail, Pad)
    - Gezieltes Verwerfen von Redundanzbits für Vorwärtsfehlerkorrektur
      - Notwendig um Coderaten von 2/3 und 3/4 erzeugen zu können
  - Interleaving Prozess
    - Zusätzliche Verwürfelung
    - Umstellung der einzelnen Bits zwischen den Unterkanälen
    - Dient der Absicherung von Bündelfehlern





# **IEEE 802.11n**



- Endgültige Fassung im September veröffentlicht
- Maximale Bruttodatenraten bei 600 Mbit/s
  - Datenübertragung per Multiple Input Multiple Output (MIMO) Technik
    - Pro parallelem Datenpfad maximal 150 Mbit/s (brutto)
    - Für höhere Datenraten Bündelung mehrerer (bis zu vier) Datenpfaden
  - Orthogonal Frequency Division Multiplexing (OFDM) als Basis-Modulation
    - Einzelträger je nach Qualität der Verbindung mittels BPSK, QPSK oder 16bzw. 64-QAM
  - Verbreiterung der Übertragungskanäle von 20 MHz auf 40 MHz
- Arbeitet im 2,4-GHz- und im 5-GHz-Frequenzbereich
  - Kompatibel zu 802.11b- und 802.11g-Netzen
  - Koexistenz mit bestehenden 802.11a-Netzen
  - Kompatibilitätsmodus kann in manchen Implementierungen deaktiviert werden (sogenannter "Greenfield"-Modus)



# **IEEE 802.11ac**



- Endgültige Fassung im Dezember 2013 veröffentlicht
- Erweiterung von 802.1n
  - Breitere Kanäle (80MHz bzw. 160MHz statt 40Mhz) im 5GHz Band
  - Mehr parallele MIMO-Datenströme (bis zu 8 statt 4)
  - Multi-user MIMO (Datenströme an verschiedene Geräte, SDMA)
  - Verbesserte Modulation (256-QAM statt 64-QAM)
  - Durchsatz bei mehreren Stationen mindestens 1Gbit/s
- Erste Implementierungen setzten nicht vollen Standard um
  - 80MHz, 3 MIMO-Datenströme, Datenraten 433,3 Mbit/s pro Strom, d.h. 1300 Mbit/s gesamt
- "Wave-2"-Geräte unterstützen 160MHz Kanäle, 4 MIMO-Datenströme, Multi-user MIMO



# **MAC Schicht**



- Spezielle Anforderungen für WLANs
  - Medienzugriff
    - In drahtlosen LANs existiert das Problem der versteckten Endgeräte
      - → WLANs benötigen spezielles Medienzugriffsverfahren
  - Einfluss des drahtlosen Übertragungsmediums
    - Drahtlose LANs sind anfälliger für Störeinflüsse als drahtgebundene
      - Höhere Bitfehlerrate des Funkmediums
      - Frequenzbereich kann auch von anderen Technologien verwendet werden
      - → Automatic Repeat Request (ARQ) Verfahren auf MAC-Schicht sinnvoll
      - → Fragmentierung auf MAC-Schicht sinnvoll
    - Drahtlose LANs sind wesentlich leichter abhörbar als drahtgebundene
      - → Sicherheitsmechanismen auf MAC-Schicht erforderlich
  - Unterstützung mobiler Endgeräte
    - Geringe Batteriekapazität

Kapitel 5 – IEEE 802.11

- Ständiges Abhören des Funkmediums würde zu viel Energie benötigen
- → Power-Management-Mechanismen auf MAC-Schicht sinnvoll





# Medienzugriff in IEEE 802.11



- Distributed Coordination Function (DCF)
  - Dezentraler Ansatz
  - In Infrastruktur- und Ad-hoc-Netzen einsetzbar
  - In Wettbewerbsphase (Contention Period CP) konkurrieren Stationen um Medienzugriff
    - Datenaustausch auf Best-Effort Basis
    - Broadcast und Multicast möglich
  - Jede IEEE 802.11 Station muss DCF unterstützen
- Point Coordination Function (PCF)

Kapitel 5 - IEEE 802.11

- Zentraler Ansatz
- Nur in Infrastruktur-Netzen einsetzbar
- Point Coordinator kontrolliert innerhalb der wettbewerbsfreien Phase (Contention Free Period - CFP) den Medienzugriff
  - Medienzugriff kann Station für bestimmten Zeitraum garantiert werden
- PCF muss nicht von jeder Station implementiert werden
  - Aktuelle Produkte unterstützen PCF in der Regel nicht



27



#### **Distributed Coordination Function**



- CSMA/CD-Verfahren (Carrier Sense Multiple Access/Collision Detection) von IEEE 802.3 einsetzbar?
  - Nein.
  - Kollisionserkennung findet bei CSMA/CD beim Sender statt
    - Station muss gleichzeitig senden und empfangen können
    - Bei WLAN vollständig getrennte Sende- und Empfangseinheit
      - Hardwareaufwand nicht gerechtfertigt
  - Kollisionserkennung muss bei WLAN beim Empfänger stattfinden
    - Vgl. Situation mit versteckten Endgeräten



- IEEE 802.11 verwendet das CSMA/CA-Verfahren (Carrier Sense Multiple Access/Collision Avoidance) für den Medienzugriff
  - MACA-Verfahren, Wahrscheinlichkeit von Kollision wird minimiert

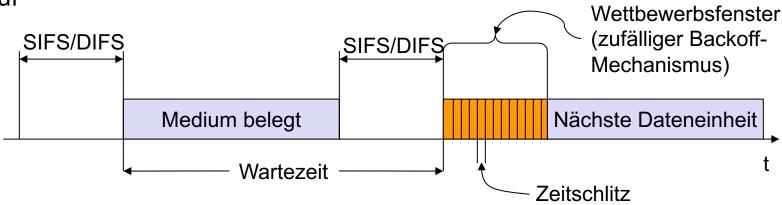




#### **Distributed Coordination Function**



- Physikalische Carrier-Sense-Funktion
  - Erkennen, ob Medium gerade von einer anderen Station belegt ist
- Virtuelle Carrier-Sense-Funktion
  - Medienreservierung auf Basis des Network Allocation Vectors (NAV)
    - In jeder MAC-Dateneinheit enthalten
    - Zeigt voraussichtliche Dauer der Medienbelegung an
- Unterschiedliche Wartezeiten (Inter Frame Spaces, IFS) nach Ablauf des NAV
  - Short Interframe Space (SIFS)
    - Höchste Priorität → geringste Wartezeit (10 µs)
  - Distributed (Coordination Function) Interframe Space (DIFS)
    - Geringste Priorität → längste Wartezeit (50 µs)
- Backoff-Algorithmus
  - Bestimmung einer zufälligen Wartezeit
  - backoff\_time = random(CW) x slot\_time
    - CWmin <= random(CW) <= CWmax</p>
    - CWmin und CWmax bilden Wettbewerbsfenster (CW Contention Window)
    - slot\_time (Zeitschlitz): festgelegt von physikalischer Schicht (bei DSSS = 20 μs)



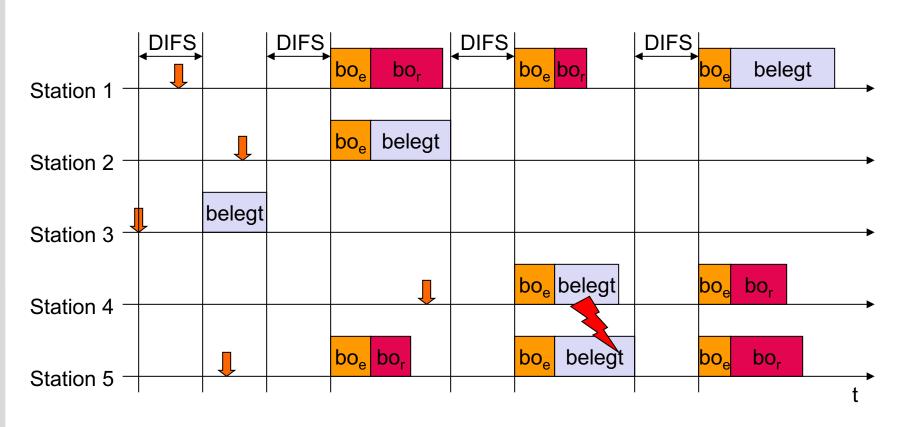



# **Distributed Coordination Function**



Ablauf




- Sendewillige Station h
  ört das Medium ab
- Fall 1: Medium ist für die Dauer eines entsprechenden IFS frei
  - Daten werden versendet
- Fall 2: Medium ist belegt
  - Warten bis das Medium für die Dauer des entsprechenden IFS frei ist
  - Zusätzlich wird das Versenden der Daten um eine zufällige Backoff-Zeit verzögert
  - Dynamische Anpassung des Wettbewerbsfensters
    - Bei fehlgeschlagenem Versuch werden *CWmin* und *CWmax* verdoppelt (bis Maximalwert)
    - Bei erfolgreichem Versuch werden *CWmin* und *CWmax* auf Minimalwert zurück gesetzt
  - Wird das Medium während der Backoff-Zeit von einer anderen Station belegt, wird der Backoff-Timer so lange angehalten





# **Stationen im Wettbewerb**





belegt

Medium belegt



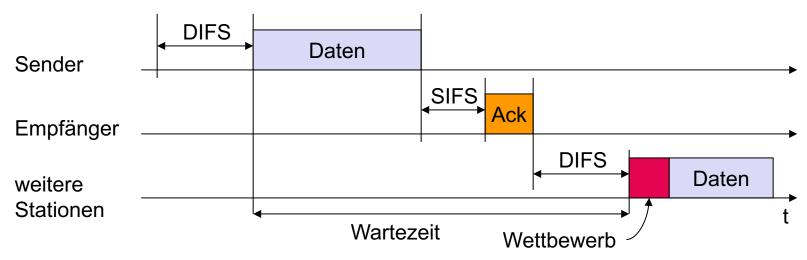
Sendewunsch liegt vor



verstrichene Backoff-Zeit



verbleibende Backoff-Zeit





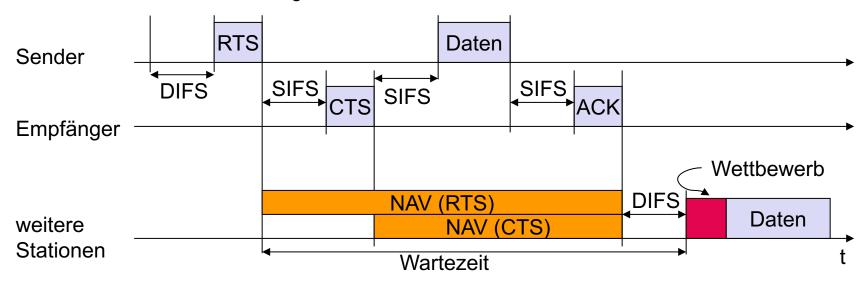

#### Senden von Unicast-Dateneinheiten



- Daten können nach Abwarten von DIFS gesendet werden
- Empfänger antworten nach SIFS mit einem ACK, falls die Dateneinheit korrekt empfangen wurde
  - Überprüfen der Korrektheit mittels CRC
- Im Fehlerfall wird die Dateneinheit vom Sender automatisch wiederholt
  - Station bewirbt sich erneut um das Medium
  - Neuer Backoff wird berechnet (CWmin und CWmax angepasst)






32

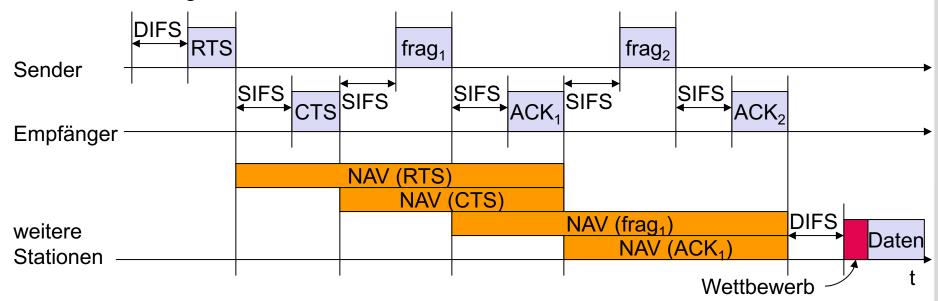


# RTS/CTS-Erweiterung



- RTS/CTS-Erweiterung für Unicast-Dateneinheiten
  - RTS kann nach Abwarten von DIFS gesendet werden
    - Belegungsdauer als Parameter mit gesendet
  - Bestätigung durch CTS nach SIFS durch Empfänger
    - Enthält ebenfalls Belegungsdauer als Parameter
  - Sofortiges Senden der Daten nach SIFS möglich
    - Bestätigung wie gehabt mit ACK
  - Andere Stationen speichern Belegungsdauer im NAV (Network Allocation Vector)
    - Virtuelle Reservierung





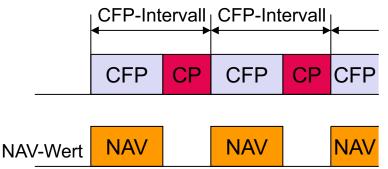



# Fragmentierung



- Ziel
  - Übertragung längerer zusammenhängender Daten
- Vorgehensweise
  - Über Sequenznummern und Fragmentnummern gesteuert
  - Stop-and-Wait ARQ-Verfahren auf Fragmente angewendet
  - Weshalb ist der NAV-Wert nicht über die Sendung der gesamten Daten gesetzt?








#### **Point Coordination Function**



- Medienzugriff wird von Point Coordinator zentral gesteuert
- PCF ist optional, d.h. nicht jede Station muss PCF unterstützen, deshalb wird zwischen 2 Phasen unterschieden
  - Contention Period (CP) Verwendung von DCF für den Medienzugriff
    - Auch Stationen die PCF nicht unterstützen können kommunizieren
  - Contention Free Period (CFP) Verwendung von PCF für den Medienzugriff
    - Zentrale Steuerung ermöglicht Realisierung von zeitkritischen Diensten
- CFP-Intervall = CFP + CP
  - Vielfaches des Beacon-Intervalls
- Periodische Beacons des Access Points setzen NAV-Wert bei Stationen die kein PCF unterstützen





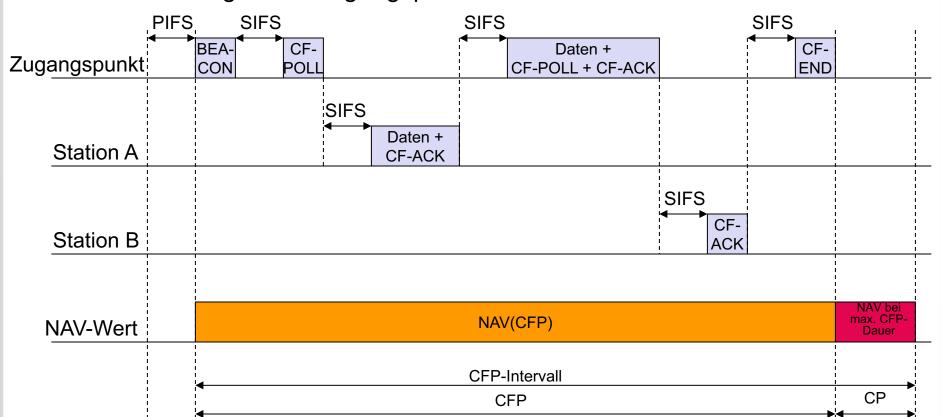


#### **Point Coordination Function**



- Poll-Liste
  - Zugangspunkt führt eine Poll-Liste
    - Enthält alle PCF-fähigen Stationen
    - PCF-Fähigkeit wird bei Assoziierung mit dem WLAN von den Stationen bekannt gegeben
- Spezielle Wartezeit
  - Point (Coordination Function) Interframe Space (PIFS)
    - Mittlere Priorität
    - Berechnung:

DIFS (bei DSSS = 
$$50 \mu s$$
)

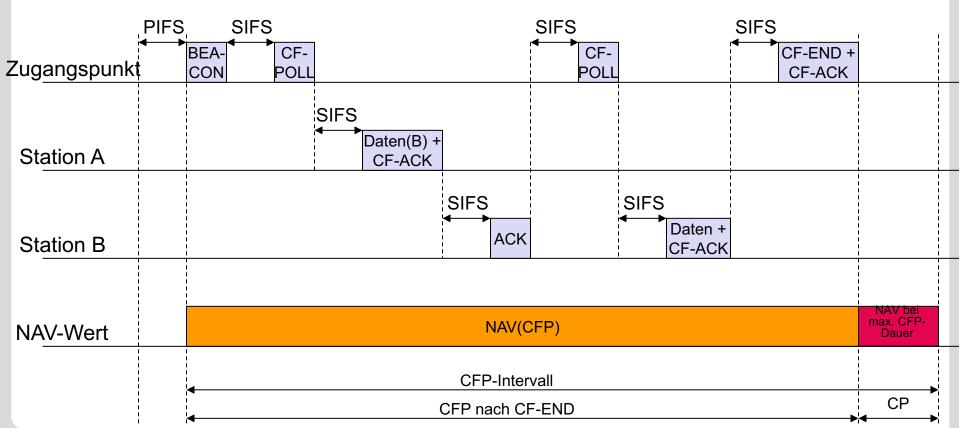





#### Kommunikation über Zugangspunkt



- Beispielablauf
  - Station A kommuniziert mit Station B über Zugangspunkt
    - Polling durch Zugangspunkt






#### **Point Coordination Function**



- Beispielablauf
  - Station A kommuniziert direkt mit Station B
- Vorteil
  - Geringere Belastung des Mediums

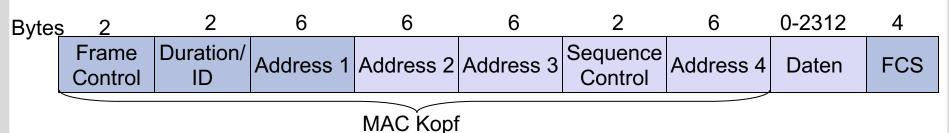






#### Format der MAC-Dateneinheiten




- Grundlegender Aufbau ähnlich dem bekannter MAC-Dateneinheiten
  - Kopf Daten Prüfsumme
- So in anderen MAC-Dateneinheiten nicht vorhanden
  - Bis zu vier Adressfelder
    - Länge des Kopfes variiert
  - Unterschiedliche Typen von MAC-Dateneinheiten
    - Daten-Dateneinheiten für den Transport von Nutzdaten
    - Kontroll-Dateneinheiten für die Steuerung des Medienzugriffs
    - Management-Dateneinheiten für das Management der Funkzelle
  - Duration/ID-Feld
    - Zeitangabe für die Datenübertragung
  - Sequenz-Kontroll-Feld
    - Fragmentnummer zur Kennzeichnung von Fragmenten
    - Sequenznummer zur Kennzeichnung von MSDUs





#### **Generelles MAC-Format**





- Felder
  - Duration/ID
    - Zeitangabe für Network Allocation Vector (NAV)
  - Sequence Control
    - Fragmentnummer (4 Bit) und Sequenznummer (12 Bit)
  - FCS: Frame Check Sequence
    - Prüfsumme
- Variable Länge des MAC-Headers
  - Felder Address 2, Address 3, Address 4, Sequence Control und Daten sind nur in bestimmten Dateneinheiten vorhanden





#### j+

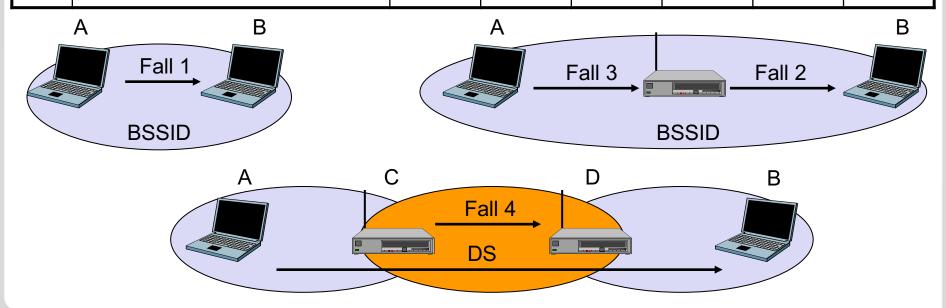
#### Frame-Control-Feld



| Bits | s: 2                | 2    | 4       | 1        | 1          | 1            | 1     | 1          | 1            | 1   | 1     |
|------|---------------------|------|---------|----------|------------|--------------|-------|------------|--------------|-----|-------|
|      | Protocol<br>Version | Туре | Subtype | To<br>DS | From<br>DS | More<br>Frag | Retry | Pwr<br>Mgt | More<br>Data | WEP | Order |

- Protocol-Version
  - Version des verwendeten Protokolls
- Type-Feld
  - Management-, Kontroll- oder Daten-Dateneinheit
- Subtype
  - Genauere Spezifikation der Dateneinheit
    - z.B. Type = Kontrollpaket, Subtype = CTS
- ToDS/FromDS
  - ► Festlegung des Übertragungsweges

- More Fragment
  - ▶ Weitere Fragmente folgen
- Retry
  - Wiederholung einer Dateneinheit
- Power Management
  - Station wechselt in Passive Mode
- More Data
  - Weitere Daten stehen an
  - Station soll nicht in Passive Mode wechseln
- WEP
  - ▶ Dateneinheit ist verschlüsselt
- Order
  - Strikte Reihenfolgeerhaltung bei Fragmenten






# Adressen in MAC-Patonoinhoiton Physikalischer Empfänger

Physikalischer Sender

| Fall  | Beschreibung               | To DS | From<br>DS | dresse |       |       |   |  |
|-------|----------------------------|-------|------------|--------|-------|-------|---|--|
| ı alı | Describulty                |       |            | 1      | 2     | 3     | 4 |  |
| 1     | Ad-hoc-Netz                | 0     | 0          | В      | Α     | BSSID | - |  |
| 2     | Infrastruktur-Netz, von AP | 0     | 1          | В      | BSSID | Α     | - |  |
| 3     | Infrastruktur-Netz, zu AP  | 1     | 0          | BSSID  | Α     | В     | - |  |
| 4     | Infrastruktur-Netz, im DS  | 1     | 1          | D      | С     | В     | Α |  |







## **MAC Management**



- Im Vergleich zu drahtgebundenen LANs wie IEEE 802.3 sind eine Reihe zusätzlicher Fragestellungen zu lösen. Zum Beispiel
  - Wie findet eine Station ein WLAN?
  - Wie wird eine Station Mitglied in einem WLAN?
  - Wie kann Energie durch "schlafen" gespart werden?
  - Wie kann die drahtlose Kommunikation abgesichert werden?
- → Aufgaben des MAC Managements

|     | LLC<br>Logical Link Control              |                   |            |
|-----|------------------------------------------|-------------------|------------|
| MAC | MAC Medium Access Control                | MAC<br>Management | Management |
| PHY | PLCP Physical Layer Convergence Protocol | PHY               | ı Manag    |
| 立   | PMD Physical Medium Dependent            | Management        | Station    |

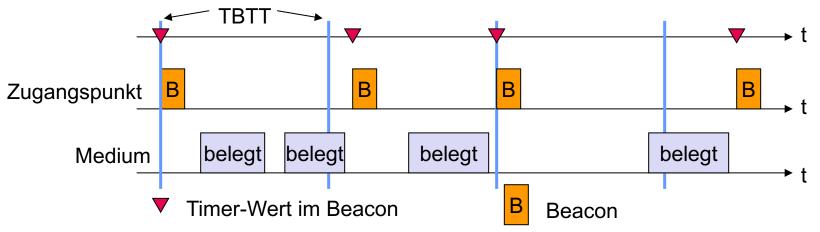




## **Synchronisation**



- **Problem** 
  - Für einige Aufgaben ist es erforderlich, dass die Stationen und Zugangspunkte über einen synchronisierten Timer verfügen, zum Beispiel:
    - Synchronisation der Sprungfolge bei FHSS
    - Power-Management
    - Koordination der PCF
- Timer Synchronization Function (TSF)
  - Stationen und Zugangspunkte besitzen einen Timer
    - 64 Bit
    - 1 MHz
    - Genauigkeit: 25 ppm (Parts per million)
  - Synchronisation der Timer untereinander
    - Unterschiedliche Ansätze für Infrastruktur-Netz (BSS) und Ad-hoc Netz (IBSS)



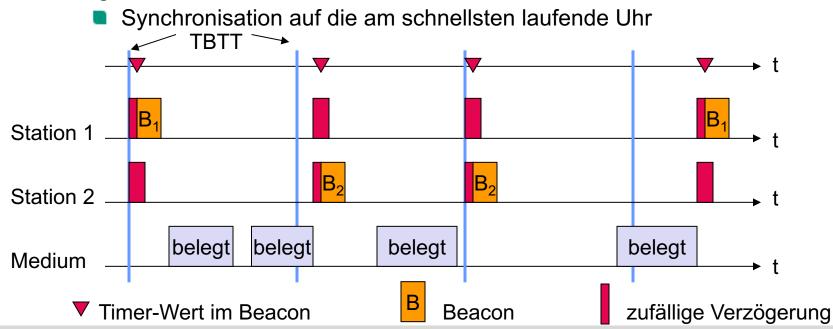



#### Timer-Synchronisation in einem BSS



- Zentraler Ansatz
  - Zugangspunkt sendet in regelmäßigen Abständen Beacons (Leuchtfeuer)
    - Broadcast-Dateneinheit
    - Enthält u.a. aktuellen Timer-Wert des Zugangspunkts
  - Target Beacon Transmission Time (TBTT)
    - Startzeitpunkt für das Aussenden eines Beacon
  - Wird beim Medienzugriff nicht anders behandelt als andere Dateneinheiten
    - Beacon kann verzögert werden
    - Timer-Wert im Beacon muss angepasst werden repräsentiert echte Sendezeit
  - Stationen aktualisieren ihren Timer anhand der Informationen im Beacon








#### Timer-Synchronisation in einem IBSS



- Verteilter Ansatz
  - Nach Ablauf der TBTT bestimmt jede Station eine zufällige Verzögerung
  - Station sendet Beacon, wenn nach Ablauf der zufälligen Verzögerung noch kein Beacon empfangen wurde
  - Timer wird nur aktualisiert, falls Timer-Wert im Beacon größer war als eigener Wert







## Scanning



- **Problem** 
  - Wie können vorhandene WLANs gefunden werden?
    - Stationen besitzen meist keine Information über vorhandene WI ANs
- Identifikation eines WLANs
  - Service Set Identifier (SSID)
    - Zwischen 0 und 32 Byte langer Netzname
  - Zugangspunkte eines Infrastruktur-Netzes haben alle die gleiche SSID
- Möglichkeit 1: Passives Scanning

Kapitel 5 - IEEE 802.11

- Zugangspunkt sendet in regelmäßigen Abständen ein Beacon
- Station hört nacheinander alle Kanäle ab
  - Typischer Zeitraum für Abhören eines Kanals: 204,8 ms 256 ms
- Empfang eines Beacons signalisiert Existenz eines Zugangspunkts
- Bei Empfang mehrerer Beacons wird der Zugangspunkt mit dem besten Empfangssignal ausgewählt





## Scanning



- Möglichkeit 2: Aktives Scanning
  - Station sendet auf einem Kanal eine Probe-Request-Dateneinheit
    - SSID des gewünschten Netzes oder Broadcast-SSID (ANY)
  - Zugangspunkte mit entsprechender SSID antworten mit Probe-Response-Dateneinheit
    - **Empfang mehrerer Antworten**

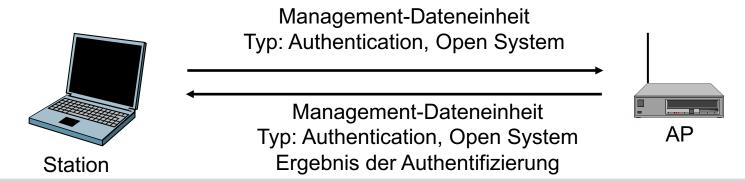
Kapitel 5 - IEEE 802.11

- Auswahl des Zugangspunkts mit dem besten Empfangssignal
- Kein Empfang einer Antwort nach Wartezeit (Probe-Delay)
  - Senden von Probe-Request-Dateneinheit auf anderem Kanal
- In Ad-hoc-Netzen wird nur aktives Scanning eingesetzt
  - Station die, letztes Beacon gesendet hat, übernimmt die Rolle des Zugangspunkts








## Authentifizierung

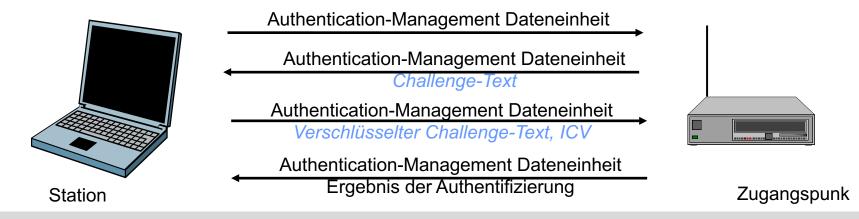






- Wer darf das WLAN nutzen?
  - Authentifizierung gegenüber dem Zugangspunkt
  - Authentifizierung zwischen zwei Stationen eines IBSS
- Möglichkeit 1: Open System Authentication
  - Keine tatsächliche Authentifizierung
  - WLAN von allen Stationen nutzbar die dies akzeptieren
  - Station sendet Dateneinheit zum Authentication-Management an AP
  - AP sendet Authentication-Management-Dateneinheit mit dem Ergebnis





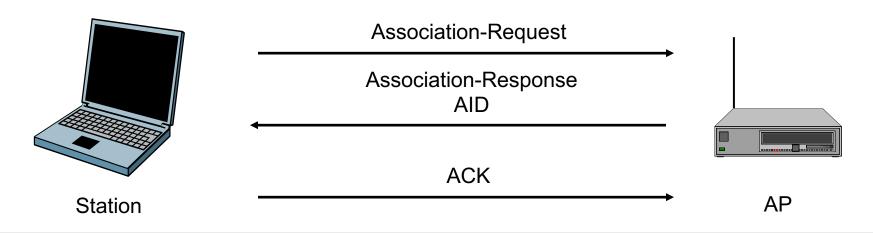



## **Authentifizierung**



- Möglichkeit 2: Shared Key Authentication
  - Basiert auf Challenge-Response-Verfahren
    - Station sendet Authentication-Management Dateneinheit an Zugangspunkt
    - Zugangspunkt antwortet mit Authentication-Management Dateneinheit
      - enthält einen zufälligen, 128-Byte langen Challenge-Text
    - Station kopiert den erhaltenen Challenge-Text
      - Generiert Prüfsumme ICV (Integrity Check Vector) und neuen Initialisierungsvektor (IV)
      - verschlüsselt Challenge-Text und ICV mit ihrem geheimen WEP-Schlüssel
      - sendet Ergebnis samt IV an den Zugangspunkt
    - Zugangspunkt empfängt verschlüsselten Text und ICV
      - Entschlüsselt Text mit seinem geheimen WEP-Schlüssel
      - Prüft Übereinstimmung mit ursprünglichem Challenge-Text
    - Zugangspunkt sendet Authentication-Management-Dateneinheit, die Ergebnis enthält








## **Assoziierung**



- Herstellung einer eindeutigen Verbindung zwischen Station und AP
  - Erfolgt im direkten Anschluss an Authentifizierung
  - Station sendet Association-Request Dateneinheit
  - Bei Erfolg antwortet AP mit Association-Response
    - Enthält Association-ID (AID) über die eine Station eindeutig identifiziert werden kann
      - Wird u.a. für Power-Management benötigt
  - Bei Fehlschlagen der Assoziierung antwortet AP mit Disassociation
  - Station bestätigt mit ACK den Empfang des Association-Response







## Re-Assoziierung



- Station führt Handover bei keiner oder schlechter Verbindung zum Zugangspunkt durch
  - Station führt Scanning nach neuem AP durch
  - Station sendet Re-association-Request an neuen AP
    - Enthält die Adresse des alten Zugangspunkts
  - AP antwortet mit Re-association-Response
    - Enthält neue AID, die für diesen Zugangspunkt gültig ist
  - Station bestätigt Empfang der Re-association-Response mit ACK
  - AP informiert alle anderen Zugangspunkte des Distribution Systems über Re-Assoziierung
- Handoff auf Vermittlungsschicht bei Subnetzwechsel notwendig
  - Siehe Kapitel Mobiles Internet



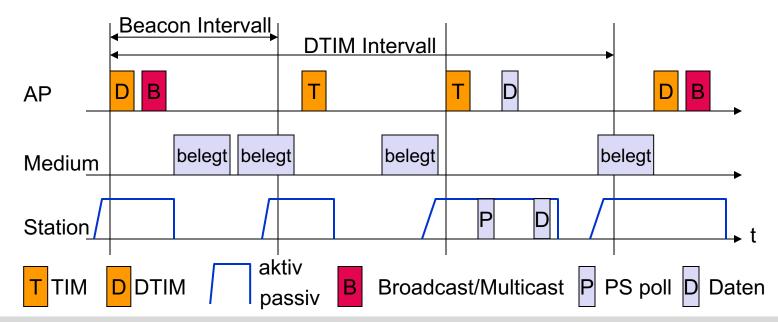


## **Power-Management**



- Ziel: Geringer Energieverbrauch
- Betriebsmodi bei IEEE 802.11
  - Active Mode (AM)
    - Sende-/Empfangseinheit aktiv
      - Daten können gesendet und empfangen werden
  - Power Save (PS)
    - Sende-/Empfangseinheit ausgeschaltet
      - Kein Empfang oder Senden von Daten möglich
      - Dateneinheiten für diese Station müssen zwischengespeichert werden
        - Infrastruktur-Netz: Zugangspunkt
        - Ad-hoc Netz: alle Stationen müssen zwischenspeichern können
      - Sender signalisiert Übergang in PS-Modus über das Power-Management-Feld einer Dateneinheit
- Grundsätzlicher Ablauf
  - Stationen befinden sich die meiste Zeit im PS-Modus
  - Zwischenspeicherung von Dateneinheiten durch Zugangspunkte
  - Stationen wechseln zu festgelegten Zeitpunkten in den AM-Modus
  - Stationen rufen zwischengespeicherte Dateneinheiten ab
  - Station wechselt zurück in den PS-Modus

Kapitel 5 - IEEE 802.11



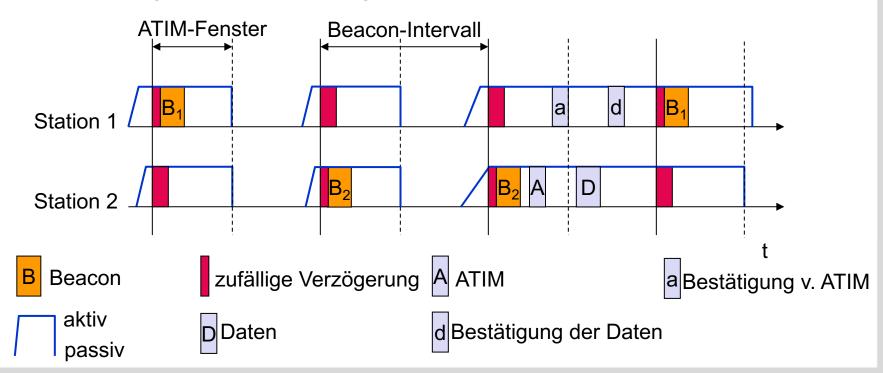



## Power-Management in einem BSS



- Zugangspunkt für Zwischenspeicherung von Dateneinheiten verantwortlich
  - Annahme: verfügt über eine Stromversorgung und deshalb immer aktiv
- Traffic Indication Map (TIM)
  - Bekanntgabe von zwischengespeicherten Dateneinheiten (AIDs)
  - Kann in einem Beacon enthalten sein
- Delivery TIM Interval (DTIM-Intervall)
  - Intervall für zwischengespeicherte Broadcast/Multicast Dateneinheiten
    - Entspricht drei Beacon Intervallen
  - Werden nur einmalig an alle Stationen gesendet
- Abruf zwischengespeicherter Dateneinheiten mit Power Save Poll (PS-Poll)








## Power-Management in einem IBSS



- Ad-hoc Traffic Indication Message (ATIM)
  - ATIM-Fenster
    - In diesem Zeitraum können alle Stationen Daten empfangen
    - Es können nur Beacons oder ATIMs gesendet werden
    - Kollisionen von ATIMs möglich (Skalierbarkeit?)
  - Bekanntgabe von Empfängern durch die sendende Station





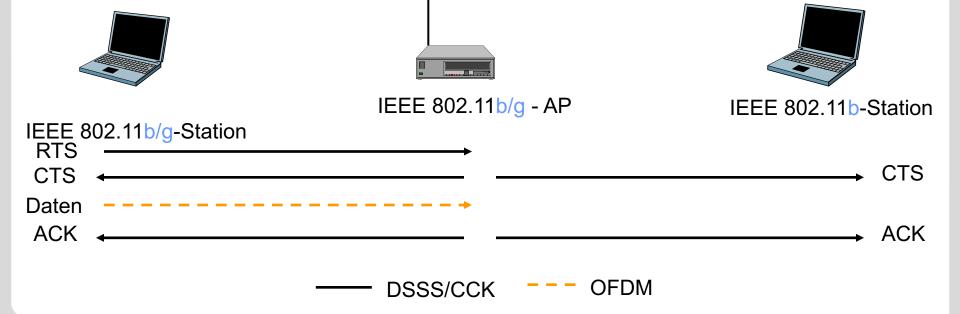


#### Erweiterungen der MAC-Schicht



- Protection-Mechanismus
  - Definiert in IEEE 802.11g
  - Koexistenz von 802.11, 802.11b und 802.11g im 2.4 GHz-Band
- Transmit Power Control
  - Definiert in IEEE 802.11h
  - Automatische Anpassung der Sendeleistung im 5 GHz-Band
- Dynamic Frequency Selection
  - Definiert in IEEE 802.11h
  - Automatischer Kanalwechsel im 5 GHz-Band
- Quality of Service (QoS)
  - Definiert in IEEE 802.11e
  - Bereitstellung von QoS-Fähigkeiten






## (6)

#### **Protection-Mechanismus**



- Ziel
  - Koexistenz von 802.11, 802.11b und 802.11g im 2.4 GHz-Band
- Vorgehensweise
  - Beacons werden immer mit DSSS bzw. CCK gesendet
  - Anpassung des RTS/CTS-Mechanismus
    - Notwendig falls sich 802.11 oder 802.11b Stationen im BSS befinden







#### **Protection-Mechanismus**





## Maximaler Durchsatz einer TCP-Verbindung

| Distance<br>(Feet) | 802.11b<br>(Mbps) | 802.11a<br>(Mbps) | 802.11g-<br>only<br>(Mbps) | 802.11g Mixed<br>Environment<br>with CTS-to-self<br>(Mbps) | 802.11g Mixed<br>Environment<br>with RTS/CTS<br>(Mbps) |
|--------------------|-------------------|-------------------|----------------------------|------------------------------------------------------------|--------------------------------------------------------|
| 10                 | 5.8               | 24.7              | 24.7                       | 14.7                                                       | 11.8                                                   |
| 50                 | 5.8               | 19.8              | 24.7                       | 14.7                                                       | 11.8                                                   |
| 100                | 5.8               | 12.4              | 19.8                       | 12.7                                                       | 10.6                                                   |
| 150                | 5.8               | 4.9               | 12.4                       | 9.1                                                        | 8.0                                                    |
| 200                | 3.7               | 0                 | 4.9                        | 4.2                                                        | 4.1                                                    |
| 250                | 1.6               | 0                 | 1.6                        | 1.6                                                        | 1.6                                                    |
| 300                | 0.9               | 0                 | 0.9                        | 0.9                                                        | 0.9                                                    |

© Dell Computer





#### **Transmit Power Control - TPC**



- Ziel
  - Automatische Anpassung der Sendeleistung
    - Festgelegte maximal zulässige Sendeleistung nicht überschreiten
    - Bestimmung der minimal notwendigen Sendeleistung
- Vorgehensweise
  - Während Assoziierung/Re-Assoziierung
    - Austausch über minimal und maximal zulässige Sendeleistung
    - Assoziierung/Re-Assoziierung einer Station wird ggf. verweigert
  - Beacons von Zugangspunkt (BSS) / Station (IBSS) enthalten maximal zulässige Sendeleistung eines Kanals
  - Dynamische Anpassung der Sendeleistung
    - Kommunizierende Stationen tauschen Verbindungsinformationen aus
      - TPC-Request/TPC-Response-Dateneinheiten
    - Algorithmus zur Anpassung der Sendeleistung ist nicht spezifiziert
      - Herstellerspezifische Lösungen



59





## **Dynamic Frequency Selection**



- Ziel
  - Automatischer Kanalwechsel im 5 GHz Band
    - Koexistenz mit Radar- und HIPERLAN/2 Systemen im gleichen Frequenzband
- 3 Alternative Vorgehensweisen
  - Kanal wird für eine gewisse Zeit (10 Sekunden) "ruhig gestellt"
    - Überprüfung des Kanals auf Verwendung durch andere Systeme
    - Über Beacons initiiert
    - Kriterien zur Erkennung eines anderen Systems nicht standardisiert
  - Medium wird in Sendepausen (SIFS/DIFS) nach anderen Systemen abgehört
  - Beauftragung anderer Stationen zur Überprüfung eines bestimmten Kanals
    - Senden von Measurement-Request-/Measurement-Response-Dateneinheiten
  - Fremdes System auf Kanal erkannt

Kapitel 5 - IEEE 802.11

- Signalisierung eines Kanalwechsels
  - Beacons, Channel-Announcement-Dateneinheiten

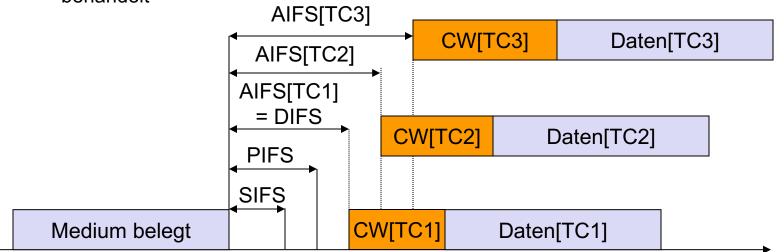




## **Quality of Service**



- Ziel
  - Bereitstellung von QoS-Fähigkeiten für zeitkritische Daten (z.B. VoIP)
    - QBSS = Funkzelle die QoS bereitstellt
- Vorgehensweise
  - Einführung von zwei neuen Medienzugriffsverfahren
    - Enhanced Distributed Coordination Function (EDCF)
      - Basiszugriffsverfahren in QBSS (ersetzt DCF)
      - Nur in CP (Contention Period) möglich
    - Hybrid Coordination Function (HCF)
      - Zentrale Verwaltung der QBSS
      - Hybrid Coordinator (HC) steuert Medienzugriff (ersetzt PCF)
      - Sowohl in CP als auch CFP möglich
  - Block-Acknowledgement-Mechanismus
    - Station kann bis zu 64 Dateneinheiten im Abstand von SIFS senden
    - Nach letzter Dateneinheit sendet die Station ein Block-ACK-Request
    - Empfänger antwortet mit Block-ACK-Response



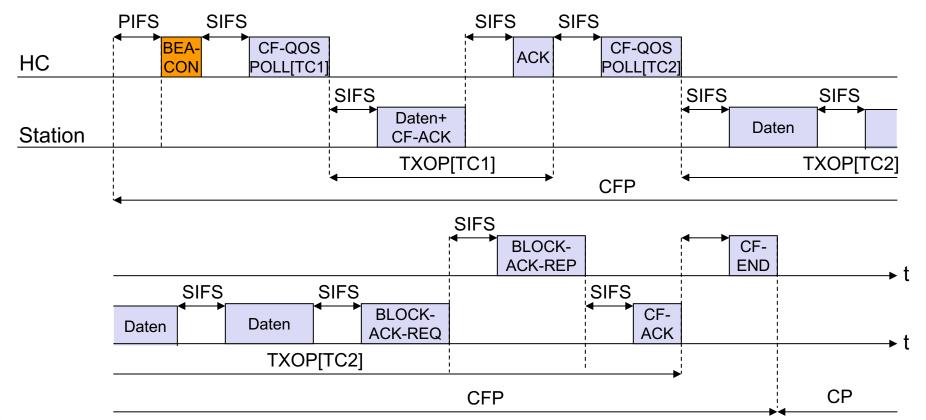



#### **Enhanced Distributed Coordination Function**



- Priorisierung von Daten durch 8 unterschiedliche Traffic Categories (TC)
- Höhere Priorität resultiert in geringerer Wartezeit beim Medienzugriff
  - Arbitration Interframe Space (AIFS)
    - Abhängig von verwendeter TC
  - Unabhängiger Backoff-Algorithmus für jede TC
    - Unterschiedliche Wertebereiche für das Wettbewerbsfenster (CW)
  - Interner Scheduler
    - Bei virtuellen Kollisionen werden Dateneinheiten mit höherer TC bevorzugt behandelt








## **Hybrid Coordination Function**



- Transmission Opportunity (TXOP)
  - Zeitintervall f
    ür eine bestimmte Traffic Category
- Station teilen Hybrid Coordinator (HC) mit, für welche Stationen TXOPs benötigt werden
- HC leitet über QoS-Poll CFP für bestimmte TXOP ein



#### Zusammenfassung I



- WLAN (802.11) hat sich als drahtloses lokales Netzwerk durchgesetzt
  - Betreibbar sowohl im Infrastruktur-Modus als auch Ad-hoc Modus
- Physikalische Schicht
  - Einsatz von DSSS im Basisstandard
  - Einsatz von OFDM in neueren Lösungen mit höherer Datenrate
  - Varianten sowohl für 2,4 GHz als auch für 5 GHz Band
  - Dateneinheiten beinhalten Information über die gewünschte Datenrate
    - Anfang wird immer mit langsamster Variante gesendet
    - Rückwärtskompatibilität
    - Längenangabe in Form einer Zeitangabe



#### Zusammenfassung II



- Medienzugriff
  - CSMA/CA-Verfahren
    - CSMA/CD nicht anwendbar (versteckte Endgeräte, gleichzeitiges Senden und Empfangen ...)
  - Zwei Zugriffsarten
    - Distribution Coordination Function (dezentral)
    - Point Coordination Function (zentral)
  - ARQ-Verfahren, Fragmentierung und Sicherheitsmechanismen in der MAC-Schicht
  - MAC-Dateneinheiten
    - Komplexer als z.B. bei Ethernet
    - Variable Kopflänge, Zeitangabe, mehrere Adressen
    - Frame-Control Feld mit zusätzlicher Information
- MAC-Management
  - Synchronisation
  - Sicherheit (z.B. Authentifikation)
  - Scanning
  - Assoziierung/Re-Assoziierung
  - Power-Management



## Übungen



- 5.1 Welche grundsätzlichen Organisationsformen gibt es für drahtlose lokale Netze?
- 5.1 Welche Modulationsverfahren kommen bei 802.11 DSSS zum Einsatz?
- 5.2 Mit welchen Verfahren werden in 802.11b verschiedene Datenraten erzielt?
- 5.3 Welche Probleme ergeben sich in drahtlosen LANS, die wir in drahtgebundenen LANs generell nicht haben?
- 5.4 Welche unterschiedlichen Medienzugriffsverfahren sind in 802.11 spezifiziert?
- 5.5 Welche konkrete Funktion erfüllt der Network Allocation Vector (NAV)?
- 5.6 Wie sind Sendeprioritäten in CSMA/CA realisiert?
- 5.7 Wie wird in WLAN Netzen Quality of Service sichergestellt?

#### Referenzen und weiterführende Literatur



- [5.1] J. Rech, Wireless LAN 802.11-WLAN-Technologien und praktische Umsetzung im Detail, Verlag Heinz Heise, 2004
- [5.2] B. O'Hara, A. Petrick, The IEEE 802.11 Handbook A Designers Companion IEEE, 1999
- [5.3] J. Schiller, Mobilkommunikation; Addison-Wesley, 2003 (Kapitel 7)
- [5.4] A. Chandra, V. Gummalla, J. Limb, Wireless Medium Access Control Protocols, IEEE Communications Surveys & Tutorials, www.comsoc.org/livepubs/surveys/public/2q00issue/gummalla.html, 6/2000
- [5.5] I. Stojmenovic, ed., Handbook of Wireless Networks and Mobile Computing Kapitel 6: Wireless Media Access Control, John Wiley & Sons, February 2002
- [5.6] <a href="https://www.ka-wlan.de/info.html">https://www.ka-wlan.de/info.html</a>
- [5.7] C.-K. Toh, Ad Hoc Mobile Wireless Networks: Protocols and Systems, Prentice Hall, 2002
- [5.8] C. Perkins, Ad-hoc Networking, Addison Wesley, 2000
- [5.9] IETF MANET Working Group <a href="http://www.ietf.org/html.charters/manet-charter.html">http://www.ietf.org/html.charters/manet-charter.html</a>
- [5.10] The MANET Bibliography <a href="http://www.antd.nist.gov/wctg/manet/manet\_bibliog.html">http://www.antd.nist.gov/wctg/manet/manet\_bibliog.html</a>
- [5.11] http://nostringsattachedshow.com/2012/01/06/dsss-with-802-11-prime-and-802-11b/
- [5.12] Ernst Ahlers: Funk-Evolution. In: c't. Nr. 13, 2009, S. 86-89.
- [5.13] <a href="http://www.dell.com/downloads/global/shared/broadcom\_802\_11\_g.pdf">http://www.dell.com/downloads/global/shared/broadcom\_802\_11\_g.pdf</a>

